Науку всегда волновало, как летучие живые существа запасают нужное количество энергии. Ведь для многих из них КПД полёта не превышает 10% (особенно это касается насекомых). И главное: в моменты резкого ускорения (включая взлёт) потребность в энергии для взмахов крыльями резко возрастает и начинает превышать ту, что, согласно общему анализу энергобаланса насекомых, есть в их распоряжении.
Бражник табачный в полёте, а также изображения, полученные рассеиванием рентгеновского излучения на его крыльях сразу после искусственной стимуляции движущих их мышц. (Иллюстрации N. George et al.)Где они берут ту прорву энергии, которая необходима для полёта в моменты резкого набора скорости?!
Том Дэниэл (Tom Daniel) и его коллеги по Вашингтонскому университету (США) полагают, что подобралась к ответу на этот вопрос.
Применив в качестве модельного организма бражника табачного (Manduca sexta), его подвергли рентгеновскому облучению под малым углом к поверхности движущихся крыльев. Температурная разница между спинной и брюшной сторонами крыла оказалась достаточно значимой, чтобы запасать в крыле энергию упругих деформаций, оставляя её в более холодных частях мускула и затем высвобождая при переходах между сокращением и расслаблением.
Это позволяет снизить нагрузку на крыло при резком разгоне и торможении: упругая деформация как бы растягивает во времени процесс резкого ускорения, что снижает общие энергозатраты на него. Между тем именно периоды самого быстрого изменения скорости считаются наиболее энергоёмкими при любых перемещениях.
Описанные результаты следовали из снимков, сделанных и при 25, и при 35 °C на протяжении 100 циклов (по 8 мс) подряд. По мере того как белок актин скользит по миозину (вы не поверите — тоже белок) в мышцах, их взаимодействие рождает силу, и чем выше температура этих межмолекулярных взаимодействий, тем больше эта сила. Замеры показали, что разница температур брюшной и спинной сторон крыла в полёте может достигать 6,9 °C!
Рассеивание рентгеновских лучей на мышцах крыла бражника позволило буквально увидеть, что происходит внутри насекомого во всём диапазоне рабочих для него температур, то есть от 25 до 35 °C. Оказалось, что циклы скольжения актина по миозину в самом деле меняются по скорости в строгом соответствии с ожиданиями — прямо пропорционально росту температуры.
Таким образом, на нижней по отношению к набегающему потоку части крыла мускулы теплее, а потому работают активнее, в то время как верхняя остаётся более прохладной. Разница между этими частями несущей плоскости порождает упругую деформацию, которая помогает мышце крыла начать следующий цикл сокращения или сжатия.
Как отмечают исследователи, выявление этого механизма может оказаться важным для понимания не одного только полёта насекомых, но и вообще локомоции живых существ.
Отчёт об исследовании опубликован в журнале Science.
Источник: КОМПЬЮЛЕНТА
Насекомые имеют фиксированную систему дыхательных трубочек — трахей, поэтому, когда гусеница растёт, она начинает испытывать недостаток кислорода. Это служит сигналом к началу линьки, во время которой дыхательная система личинки пополняется новыми «воздуховодами».
Гусеница каролинского бражника (фото jeffk42)Прежде чем превратиться во взрослую бабочку, гусеница интенсивно питается и растёт, время от времени претерпевая линьку. Всего таких линек перед главным метаморфозом бывает 4–5. Линьки и окукливание гусеницы контролируются сложно организованной гормональной системой. Но что именно даёт насекомому сигнал к линьке?
Исследователи из Университета Дьюка (США) утверждают, что решающим фактором в данном случае оказывается дыхательная система гусеницы. Она у насекомых представлена системой трубочек — трахей, которые пронизывают всё тело и открываются на поверхности; грубо говоря, газообмен происходит с помощью пассивной вентиляции. Второй особенностью системы трахей является то, что на стадии личинки она не растёт вместе с телом между линьками. Каждая стадия личинки-гусеницы имеет строго фиксированную по размерам дыхательную систему. Сама гусеница интенсивно растёт, её шкурка до какой-то степени эластична, но образовывать новые трахеи она не позволяет. И вот, когда имеющаяся дыхательная система уже не может обеспечивать ткани кислородом, происходит линька, во время которой образуются новые трахеи, открывающиеся на поверхности тела.
Эксперименты проводились с гусеницами каролинского бражника Manduca sexta. Учёные отметили, что каждая следующая линька начинается тогда, когда масса гусеницы увеличивается в 4,8 раза по сравнению с предыдущим показателем.
Масса и размер тела, безусловно, зависят друг от друга, и для того, чтобы проверить гипотезу о взаимосвязи линьки и размера дыхательной системы, исследователи искусственно создавали для гусениц недостаток кислорода. В результате подопытные начинали линять, не достигнув размера тела, который обычно запускал линьку. Значит, не размер сам по себе, а его соотношение с фиксированной дыхательной системой подавало сигнал к началу процесса: трахеи не могли снабжать выросшее тело достаточным количеством кислорода.
Что любопытно, даже с отрезанной головой гусеницы реагировали линькой на снижение количества кислорода в воздухе. Вероятно, пишут авторы в журнале PNAS, гормоны экдизоны, управляющие у насекомых линькой и метаморфозом, образуются не только в голове, но и в брюшке. В то же время переключение на линьку (и сам этот процесс) происходит слишком медленно, если подчиняется лишь тому гормону, который вырабатывается в туловище. Насекомые имеют фиксированную систему дыхательных трубочек — трахей, поэтому, когда гусеница растёт, она начинает испытывать недостаток кислорода. Это служит сигналом к началу линьки, во время которой дыхательная система личинки пополняется новыми «воздуховодами».
Прежде чем превратиться во взрослую бабочку, гусеница интенсивно питается и растёт, время от времени претерпевая линьку. Всего таких линек перед главным метаморфозом бывает 4–5. Линьки и окукливание гусеницы контролируются сложно организованной гормональной системой. Но что именно даёт насекомому сигнал к линьке?
Исследователи из Университета Дьюка (США) утверждают, что решающим фактором в данном случае оказывается дыхательная система гусеницы. Она у насекомых представлена системой трубочек — трахей, которые пронизывают всё тело и открываются на поверхности; грубо говоря, газообмен происходит с помощью пассивной вентиляции. Второй особенностью системы трахей является то, что на стадии личинки она не растёт вместе с телом между линьками. Каждая стадия личинки-гусеницы имеет строго фиксированную по размерам дыхательную систему. Сама гусеница интенсивно растёт, её шкурка до какой-то степени эластична, но образовывать новые трахеи она не позволяет. И вот, когда имеющаяся дыхательная система уже не может обеспечивать ткани кислородом, происходит линька, во время которой образуются новые трахеи, открывающиеся на поверхности тела.
Эксперименты проводились с гусеницами каролинского бражника Manduca sexta. Учёные отметили, что каждая следующая линька начинается тогда, когда масса гусеницы увеличивается в 4,8 раза по сравнению с предыдущим показателем.
Масса и размер тела, безусловно, зависят друг от друга, и для того, чтобы проверить гипотезу о взаимосвязи линьки и размера дыхательной системы, исследователи искусственно создавали для гусениц недостаток кислорода. В результате подопытные начинали линять, не достигнув размера тела, который обычно запускал линьку. Значит, не размер сам по себе, а его соотношение с фиксированной дыхательной системой подавало сигнал к началу процесса: трахеи не могли снабжать выросшее тело достаточным количеством кислорода.
Что любопытно, даже с отрезанной головой гусеницы реагировали линькой на снижение количества кислорода в воздухе. Вероятно, пишут авторы в журнале PNAS, гормоны экдизоны, управляющие у насекомых линькой и метаморфозом, образуются не только в голове, но и в брюшке. В то же время переключение на линьку (и сам этот процесс) происходит слишком медленно, если подчиняется лишь тому гормону, который вырабатывается в туловище.
Источник: КОМПЬЮЛЕНТА
15-01-2016 Просмотров:7408 Новости Антропологии Антоненко Андрей
Люди уже населяли арктический регион Сибири около 45 тысяч лет назад, то есть на 10 тысяч лет раньше, чем считалось до сих пор. Такой вывод сделали российские ученые из институтов...
11-07-2017 Просмотров:5095 Новости Ботаники Антоненко Андрей
Помидоры и некоторые другие растения выработали оригинальную тактику борьбы с гусеницами – их листья содержат столько "несъедобных" молекул и частиц, что насекомые становятся каннибалами и начинают поедать своих сородичей, говорится в статье, опубликованной в журнале Nature...
11-07-2012 Просмотров:10231 Новости Экологии Антоненко Андрей
Исследователи увидели, как глобальное потепление через гены влияет на миграционное поведение рыб. В последнее время резко возросло количество работ, посвящённых тому, как животные и растения приспосабливаются к изменениям климата. Естественно, людей...
19-11-2014 Просмотров:7890 Новости Цитологии Антоненко Андрей
Группа ученых из университета Тель-Авива (Израиль) под руководством профессора Нира Бен-Таля (Nir Ben-Tal) предлагает первую глобальную картину эволюционного происхождения белков. Результаты нового исследования опубликованы на сайте университета. Каждая клетка содержит тысячи белков, каждый...
Нейроны не могут самостоятельно оформить текущие переживания в долгую память. На помощь им приходят астроциты, которые снабжают нейроны дополнительным источником энергии. Нейроны головного мозгаНейрофизиологи прояснили важный этап формирования в мозге долговременной…
Об эволюции мы обычно говорим в прошедшем времени, тем самым как бы подразумевая, что всю свою работу она уже сделала и все нынешние живые организмы будут до конца времён пребывать…
Палеонтологи впервые обнаружили переходное звено между сухопутными рептилиями и ихтиозаврами, вымершими водными существами, жившими в мезозое. Вероятно, предок ихтиозавров переваливался по берегу, подобно тюленю. Cartorhynchus lenticarpusОписание находки, сделанной китайскими учеными из…
Ученые нашли в бирманском янтаре необычного жука-стафилиниду, который превратил свои антенны в грабли, приспособленные для ловли мелких прыгающих ногохвосток. Описание находки, подготовленное китайскими специалистами, опубликовано в журнале Scientific Reports. Cascomastigus monstrabilisВ последнее…
Известно, что РНК, которая получается в результате транскрипции, ещё незрелая, неотредактированная, в ней есть фрагменты, которые будущему белку не нужны. Поэтому РНК проходит обязательную посттранскрипционную правку: из неё вырезаются одни…
Палеонтологи обнаружили в Китае десятки скелетов птеродактилей и их яйца. Находка доказывает, что эти летающие рептилии образовывали колонии, подобно некоторым современым птицам. ЯйцоОб этом говорится в статье китайских ученых из Института палеонтологии позвоночных и…
Скопление тысяч костей мамонтов, ранее найденных в арктической зоне Якутии, возникло благодаря людям, которые в древности активно использовали останки этих животных для собственных нужд – к такому выводу пришел коллектив…
Палеонтологи заново изучили пернатую рептилию, обнаруженную в юрских отложениях Китая, и пришли к выводу, что она является предком птиц, но при этом не относится к динозаврам. Это значит, что гипотеза…
Скелет примитивного гадрозавра, обнаруженный американскими палеонтологами в штате Алабама, указал ученым на место происхождения всех утконосых динозавров. Им оказался древний субконтинент Аппалачия, располагавшийся в мезозое на месте восточной части современных…